病毒學國考總複習 Prof. Lih-Hwa Hwang (黃麗華) Institute of Microbiology and Immunology National Yang-Ming University #### Virion Structure: Naked Capsid #### Component • Protein #### **Properties*** • Is environmentally **stable** to the following: **Temperature** Acid **Proteases** **Detergents** **Drying** • Is released from cell by lysis #### Consequences* - Can be spread easily (on fomites, from hand to hand, by dust, by small droplets) - Can dry out and retain infectivity - Can survive the adverse conditions of the gut (fecal-oral route transmission) - Can be resistant to detergents and poor sewage treatment - Antibody may be sufficient for immunoprotection #### * Exception exist #### **Virion Structure: Envelope** #### **Components** - Membrane - Lipids - Proteins - Glycoproteins #### **Properties*** • Is environmentally **labile**—disrupted by the following: Acid **Detergents** **Drying** Heat - Modifies cell membrane during replication - Is released by budding and cell lysis #### Consequences* - Must stay wet - Cannot survive the gastrointestinal tract - Spreads in large droplets, secretions, organ transplants, and blood transfusions - Does not need to kill the cell to spread - May need antibody and cell-mediated immune response for protection and control - Elicits hypersensitivity and inflammation to cause immunopathogenesis. ## **Families of DNA and RNA Viruses** DNA viruses: 7 families RNA viruses: at least 13 families #### **Properties of DNA Viruses** - DNA is not transient or labile. - Many DNA viruses establish persistent infections (e.g., latent, immortalizing). - > DNA genomes reside in the **nucleus** (except for poxviruses). - Most DNA viruses use the cell's **DNA-dependent Pol II and other enzymes to make mRNA**, but may encode their own transcriptional activators to regulate their gene expression. (but, poxvirus.....) - Viral gene transcription is temporally regulated. - Early genes encode DNA-binding proteins and enzymes. - Late genes encode structural and other proteins. - > DNA polymerases require a primer to replicate the viral genome. - The larger DNA viruses encode means to promote efficient replication of their genome. #### **Properties of RNA Viruses** - RNA is labile and transient. - (+)-RNA viruses vs. (-)-RNA viruses: what is the difference? - (+) RNA can be used directly for protein translation; (-) RNA cannot. So, naked (+) RNA is infectious and naked (-) RNA is not. - Most RNA viruses replicate in the cytoplasm. (except for bornavirus and Influenza virus) - Cells cannot replicate RNA. RNA viruses must encode an RNA-dependent RNA polymerase (RdRP), which are prone to mutation → quasispecies of viruses. - RNA viruses, except (+) RNA genome, must carry polymerases. - All (-) RNA viruses are enveloped. | | Parvo | Polyoma | |--------------------------------|--|--| | Virion structure | Icosahedral capsid, naked capsid | Icosahedral capsid, naked capsid | | Genome | Linear, ssDNA, ~5 kb | Circular, dsDNA, ~5.3 kb DNA with minichromosome | | Replication | ITR as primer, strand displacement Cellular DNA polymerase + Rep proteins for replication and transcription Must replicate in mitotically active cells: prefer erythroid precursor cells | Bidirectional from Ori. Ts: early (T and t antigens) and late (VP1, VP2, and VP3) Cellular DNA Pol + LTAg for DNA replication, and Pol II for RNA Ts LTAg inactivates pRb and p53 | | Lytic and/or
Latency (site) | Lysis by nuclear and cytoplasmic membrane degeneration | Permissive cells → cell death Non-permissive cells → transformation latent in kidney and lungs | | Pathogenesis | B19 virus causes biphasic diseases: 1. Early infection phase, viremia: flu-like symptoms 2. Late infection phase, Immune-mediated: adults: rash and arthralgia children: erythema infectiosum (fifth disease) fetus: anemia-related disease and death (hydrops fetalis) Chronic hemolytic patients: life threatening aplastic crisis (再生不良性貧血) | JC and BK viruses: Ubiquitous infection in humans, rare diseases, unless in immunosuppressed patients: JC: CNS → PML, JCV partially transform astrocytes and kills oligodendrocytes, causing demyelination. BK: urinary tract → hemorrhagic cystitis (出血性膀胱炎) | | Transmission | Respiratory and oral secretions | Respiratory transmission or oral route -> viremia to kidney or lung | | viruses | B19, Bocavirus (acute respiratory disease), AAV (dependovirus, no disease) | BK, JC viruses, Merkel cell virus, SV40, polyoma | | Others | Rash is due to immune complexes. B19 infection in utero causes spontaneous abortion | Virus is ubiquitous and infections are asymptomatic. | | | Papilloma | Adenovirus | |--------------------------------|---|--| | Virion structure | Icosahedral capsid, naked capsid | Icosadeltahedral capsid with fibers, naked capsid | | Genome | Circular, dsDNA, ~8 kb DNA with minichromosome | Linear dsDNA, ~35 kb | | Replication | Bidirectional from Ori. Ts all in one direction Ts: early (E1-E7) and late (L1 and L2) E7 inactivates pRb; E6 inactivates p53 to promote cell growth | 1.pTP (protein) as primer 2.Virus-encoded DNA polymerases 3.Strand-displacement mechanism 4.E1A inactivates pRb; E1B inactivates p53 to promote cell growth | | Lytic and/or
Latency (site) | The infectious cycle follows differentiation of epithelial cells: Persist in the basal layer and then produce virus in terminally differentiated keratinocytes | Lytic in mucoepithelial cells Latent in lymphoid tissues | | Pathogenesis | Cutaneous HPV: skin warts Mucosal HPV: benign head and neck tumors, anogenital warts: HPV6, 11: Laryngeal papilloma, anogenital warts, condyloma acuminatum (尖形濕疣) HPV16, HPV18: cervical cancer | Diseases are determined by tissue tropisms of specific groups or serotypes, diseases: Acute respiratory disease Pharyngitis Conjunctivitis Hemorrhagic cystitis gastroenteritis | | Transmission | Close contact (direct or sexual) | Aerosol, close contact, fecal-oral | | viruses | HPV, many serotypes | Adenoviruses, many serotypes | | Others | Viral replication is determined by cell differentiation states. Vaccines are available for HPV 6, 11, and/or 16, 18. Pap smear: koilocytes | Can be used as vectors for gene therapy. Ad virus transforms rodent cells, but not human cells. | | | | Human Herpesviruses | | | | |---------------------|---|--|---|--|--| | | HSV (HHV-1, -2) | VZV (HHV-3) | EBV (HHV-4) | CMV (HHV-5) | | | Virion /
Genome/ | HSV-1, HSV-2, Enveloped,
Icosadeltahedral capsid
ds linear DNA | Same as HSV | Same as HSV | Same as HSV | | | replication | early: bidirectional, late:
rolling circle encodes its own
polymerase and
scavenging enzymes | | | | | | Types | α | α | γ | β | | | Lytic incells | Lytic: fibroblast, epithelial cells | Lytic: fibroblast, activated T, epithelial cells, epidermal cells | Lytic: activated B cells, epithelial cells | <u>Lytic</u> : epithelial cells, fibroblast, granulocyte | | | Latent sites | Latent: neuron cells | Latent: neuron cells | Latent: memory B cells | <u>Latent</u> : myeloid cells,
monocytes, lymphocytes, | | | Pathogenesis | Labial and genital lesions, e.g., cold sore, pharyngitis, encephalitis, keratoconjunctivitis whitlow | Varicellar (chickenpox) in children Zoster (shingles) in adults | Infectious mononucleosis
(hetrophile Ab-positive),
pharyngitis, Burkitt's lymphoma,
nasopharyngeal carcinoma,
Hodgkin's lymphoma | Most: asymptomatic Congenital defects,
mononucleosis
(heterophile Ab-negative) Opportunistic under
immunosuppression | | | Transmission | Orally and sexually, close contact viruses in saliva, vaginal secretions, lesion fluid | Respiratory droplet,
inhalation, close
contact | Saliva, close contact | Orally, sexually, blood
transfusion, tissue
transplantation, in utero, at
birth, by nursing | | | Others | Cowdry type A inclusion body, syncytia + Anti-viral drugs available | Vaccine and anti-
viral drugs are
available | Atypical lymphocytes (Downey cells) | Large cell and owl's eye inclusion body Anti-viral drugs available | | | | Human He | rpesviruses | |---------------------------------|---|--| | | HHV6/7 | HHV8 | | Virion / Genome/
replication | Same as HSV | Same as HSV | | Types | β | γ | | Latent sites | Latent: T cells and monocytes | Latent: B cells | | Pathogenesis | Exanthem
subitum (roseola
infantum) (玫瑰
疹) | Kaposi's sarcoma associated with AIDS Primary effusion lymphoma (a rare B lymphoma) | | Transmission | Saliva The salivary gland is an in vivo reservoir for HHV-6 | Blood and sexual transmission | | Others | Lymphotropic
(same as CMV)
Rapid onset of
high fever | | | | Poxvirus | |--------------------|---| | Viron
structure | Enveloped, internal core (dumbbell) and lateral bodies | | Genome | Linear, dsDNA with closed hairpin ends, no free 3' and 5' ends | | DNA
replication | 1.self-priming 2.Replication in the cytoplasm 3.Virus-encoded DNA-dependent DNA and RNA polymerases, capping and polyadenylation enzymes 4.mRNAs do not contain introns | | Lytic or latent | Cell lysis or exocytosis | | Pathogenesis | Smallpox virus: lytic, only infect humans, vesicle appears all at once, bioterror agent Molluscum contagiosum: wart-like growth, only infect humans Vaccinia: lytic viruses, zoonotic | | Transmission | Smallpox: aerosols and direct contact All other poxviruses: contact | | viruses | Variola, vaccinia, molluscum contagiosum | | Others | The largest DNA virus in human Virus is completely eradicated by vaccine | | | Picorna | Corona | Noro (Calici) | |--------------------------------|--|---|--| | Virion structure | Naked capsid, (+) RNA | Enveloped, (+) RNA | Naked capsid, (+) RNA | | Genome | VPg protein at 5' end, IRES at 5'-UTR, and poly-A at 3' end | Cap at 5 end and poly-A at 3' end, the largest RNA virus | VPg protein at 5' end and poly-A at 3' end, | | Protein synthesis | 1 polyprotein, IRES-dependent translation | Early proteins and late proteins | Early proteins and late proteins | | RNA replication /transcription | (+) RNA → (-) RNA → (+) RNA
Encodes RdRP | (+) RNA → (-) RNA → subgenomic RNAs and (+) RNA | (+) RNA → (-) RNA → subgenomic RNA and (+) RNA | | Pathogenesis | Tissue tropic: Polio: encephalitis, paralysis Coxackie A: hand-foot-mouth, herpangina, meningitis Coxackie B (A, echo): myocarditis (心肌炎), pericarditis (心包炎), pleurodynia (肌肋痛) EV71: rash, HFMD, meningitis (腦膜炎), encephalitis HAV: hepatitis | CoV: Common cold (2 nd) SARS-CoV: pneumonia, diarrhea (bat → palm civets → human) MERS-CoV: pneumonia, renal failure (? → dromedary →human) | Diarrhea, nausea and
vomit, and abdominal
cramps | | Transmission | Fecal-oral or
Respiratory (rhinovirus) | Respiratory or
Fecal-oral | Fecal-oral | | viruses | Poliovirus, enterovirus, rhinovirus (1st common cold, >33°c cannot grow) | CoV: cannot grow >33°C
SARS-CoV: replicate at 37°C
MERS-CoV: replicate at 37°C | Norwalk-like viruses Caliciviruses Astroviruses | | Others | Virus is the pathologic effect OPV (live) vs. IPV (killed) vaccines Rarely cause enteric diseases | Detergent resistant due to
glycoprotein corona | | | | Toga | Flavi | | |--------------------------------|--|---|--| | Virion structure | Enveloped, (+) RNA | Enveloped, (+) RNA | | | Genome | Cap at 5' end of RNA | HCV contains IRES at 5' end, others contain Cap | | | Protein synthesis | Early / Late proteins | One polyprotein | | | RNA replication /transcription | (+) RNA → (-) RNA → subgenomic RNA and (+) RNA | (+) RNA → (-) RNA → (+) RNA | | | Pathogenesis | Arboviruses (WEE, EEE, VEE): encephalitis Sindbis, Semliki Forest: subclinical Chikungunya: fever, arthritis, arthralgia Rubella (not arbovirus): German measles, rash, swollen glands (lymphadenopathy). Immune complexes most likely cause the rash and arthralgia. | Arboviurses Encephalitis viruses: St. Louis, West Nile, JEV Hemorrhagic diseases: Yellow fever virus: jaundice, hepatitis, black vomit Dengue virus: hemorrhagic fever, breakbone fever, dengue shock syndrome HCV (not arbovirus): chronic hepatitis | | | Transmission | Arthropod vector (<i>Aedes</i> and <i>Culex</i> mosquito Viruses spread in blood to neurons and brain Rubella virus: respiratory spread HCV: blood and sexual transmission | ctor (<i>Aedes</i> and <i>Culex</i> mosquitoes), reservoir in birds or small animals. d in blood to neurons and brain. respiratory spread | | | viruses | Sindbis virus, semliki Forest, WEE, EEE, VEE,
Chikungunya, and Rubella | Yellow Fever, JEV, dengue virus, Dengue virus, ZIKV, and HCV | | | Others | Rubella: congenital diseases. Vaccine is available. | ZIKV: congenital diseases (microcephaly) Non-neutralizing Ab promotes dengue infection (ADE: Ab-dependent enhancement). Four serotypes. | | | | Rhabdo | Filo | Borna | Paramyxo | |-------------------|---|--|---|--| | Virion | Enveloped, (-) RNA | Enveloped, (-) RNA | Enveloped, (-) RNA | Enveloped, (-) RNA | | segment | Non-segmented | Non-segmented | Non-segmented | Non-segmented | | Replication cycle | (-) RNA → mRNA →
(-) RNA replication and
transcription | (-) RNA → mRNA →
(-) RNA replication
and transcription | (-) RNA → mRNA →
(-) RNA replication
and transcription | (-) RNA → mRNA → (-) RNA replication and transcription | | Pathogenesis | Rabies virus: encephalitis and neuron degenerate. Negri body in infected cells | Widespread
hemorrhage
(internal bleeding,
liver damage,
organ dysfunction)
high mortality rate Virus replicates
efficiently in EC,
monocytes, DC,
macrophages | neuropsychiatric disease, such as schizophrenia (精神分裂症), bipolar disorder (躁鬱症), depression (憂鬱), and autism (自閉症). | Measles virus: rubeola (麻疹), high fever and CCC+P (咳嗽,鼻炎,結膜炎,畏光), otitis (耳炎), croup (哮吼), bronchopneumonia, encephalitis (e.g., SSPE) Parainfluenza: mild cold, or lower RT disease (25%), or croup (2-3%) Mumps virus: parotitis (腮腺炎), orchitis (睪丸炎) Respiratory syncytia virus (RSV): highly fatal acute respiratory tract infection in infants and young children | | Transmission | Zoonosis: animal bite aerosol (bat) | contact with blood,
secretions, organs or
bodily fluids | ?? Olfactory route
?? Hematogenous
transmission | Aerosol: respiratory Subacute sclerosing panencephalitis (SSPE) occurs several years after measles. | | viruses | VSV, Rabies virus | Ebola virus, Marburg
virus | Borna disease virus | Measles, parainfluenza, mumps, RSV, Hendra, Nipah, new castle disease virus | | Others | Hydrophobia Post-exposure prophylaxis is possible. | Handle in BSL4 | Replication in the nucleus | Induce syncytia Mucous Koplik spots for measles Measles and mump virus: life-long immunity Paramyxovirus (parainfluenza and mumps): HN, used for HA assay Pneumovirus (RSV): G, will not agglutinate erythrocytes MMR vaccines: measles, mumps, rubella | | | Orthomyxo | Bunya | Arena | |-------------------|--|---|---| | Virion | Enveloped, (-) RNA | Enveloped, (-) RNA | Enveloped, (-) RNA | | segment | 8 | 3 | 2 | | Replication cycle | (-) RNA \rightarrow 10 mRNA \rightarrow (-) RNA replication and transcription in the nucleus | (-) RNA → mRNA → (-)
RNA replication and
transcription | (-) RNA → mRNA → (-) RNA replication and transcription | | Pathogenesis | Flu symptoms: due to virologic and immunopathologic effects Pneumonia by influenza or secondary bacterial infection | Encephalitis viruses: arbovirus Hantavirus (not arbovirus): pulmonary syndrome | LCMV: meningitis Lassa fever virus:
hemorrhagic fever | | Transmission | Aerosol Annual epidemics due to mutations (drift) Pandemics due to reassortment of genome segments between human and animal viruses (shift) | Encephalitis viruses: insects Hantavirus: inhalation of aerosol from rodent urines or feces | inhalation of
aerosol from
rodent urines or
feces LCMV: worldwide Lassa fever: Africa | | viruses | Influenza A, B (no reassortment), C (no human disease) | Bunyavirus, Hantavirus | LCMV, Lassa | | Others | Have 2 spliced RNAs, cap is stolen from host in the nucleus HA and NA can elicit protective Ab H5N1 and H7N9 are avian influenza viruses, but occasionally infect human, high mortality rates Human influenza virus uses (SAα2,6Gal) receptor; Avian influenza virus uses (SAα2,3Gal) receptor Live attenuated or killed vaccines: two flu A and one flu B Neuraminidase inhibitors: Tamiflu, Relenza (release) M2 inhibitors: amantadine, rimantadine (uncoating) | Ambisense translation
in some viruses cap is stolen from host
in the cytoplasm Hantavirus is not an
arbovirus | Ambisense translation Two circle RNA segments Viruses persist in specific rodents | | | Reovirus | Retrovirus | Prion | |-------------------|---|---|--| | Virion | Double capsid, dsRNA | Enveloped, diploid (+)RNA | Infectious protein aggregates, PrPsc | | segment | 10-12 | diploid | | | Replication cycle | ±RNA → 10-12 mRNA → packaged, and (-)RNAs are synthesized and transcribed in the capsid | (+)RNA→reverse transcrition→cDNA→proviral DNA→mRNA and genomic DNA→assembly Simple retroviruses have three genes: gag. Pol, and env Complex retroviruses (HIV, HTLV): gag, pol, env and accessory genes | Prion binds to normal PrP, alter their conformation, and build fibrils in the brain | | Pathogenesis | Rotavirus: serious
diarrhea in young children Colorado tick fever:
arbovirus, DV-like disease | HIV: AIDS (when CD4 T cells drop below 200/μL) HTLV (long latency) and many other animal viruses (short latency): tumors | Spongiform encephalopathy CJD, Kuru, GSS disease, FFI | | Transmission | Rotavirus: fecal-oral | Blood and sexual | Surgical device,
injection, food,
genetics | | viruses | Rotavirus, reovirus | HIV, HTLV, and many animal retroviruses carrying oncogenes | | | Others | ISVP (infectious subviral particle) facilitates infection dsRNA remains in the core Reassortment is possible NSP4 is a toxin-like molecule causing diarrhea, dehydration | Virions carry RT, integrase, protease enzymes Cause syncytia HIV: CD4 is the receptor CCR5 (M-tropic, macrophage and memory T) and CXCR4 (T-tropic, naïve T) as co-receptors Tat/Tax transactivate viral gene expression Rev/Rex facilitates the transport of unspliced and singly spliced mRNA to the cytoplasm Nef: essential for AIDS Other accessory molecules: modulate cellular antiviral activities Treatment: HAART, nucleoside analogs, protease inhibitor | Resistant to protease, heat and UV radiation No immune response, no inflammation No means of prevention or control | | Feature | Hepatitis A | Hepatitis B | Hepatitis C | Hepatitis D | Hepatitis E | |------------------------------|------------------------------|--|---|--|--| | Virus
structure | Picornavirus;
capsid, RNA | Hepadnavirus; envelope,
DNA | Flavivirus; envelope,
RNA | Viroidlike; envelope is from HBV, circular RNA | Hepevirus; capsid,
RNA
Calici-like virus | | Transmission | Fecal-oral | blood, sexual | blood, sexual | blood, sexual | Fecal-oral | | Onset | Abrupt | Insidious | Insidious | Abrupt | Abrupt | | Severity | Mild | Occasionally severe;
<10% chronicity in
immune-competent adults | Usually subclinical;
70% chronicity | Coinfection with HBV occasionally severe; superinfection with HBV often severe | Normal patients,
mild; pregnant
women, severe | | Mortality pregnant | <0.5% | 1%-2% | ~4% | High to very high | Normal patients,
1%-2%;
pregnant women,
20% | | Chronicity/
carrier state | No | Yes | Yes | Yes | No | | Other diseases | None | Primary hepatocellular carcinoma, cirrhosis | Primary
hepatocellular
carcinoma, cirrhosis | Cirrhosis, fulminant
hepatitis | None | | Laboratory
diagnosis | Symptoms and anti-HAV IgM | Symptoms and serum
levels of HBsAg, HBeAg,
and anti-HBc IgM
Recovered: anti-HBs (+) | Symptoms and anti-
HCV ELISA | Anti-HDV ELISA | - | | Treatment or vaccine | Inactivated vaccine, hygiene | rHBsAg vaccine:
anti-HBs(+) but anti-HBc(-) | Anti-viral drugs,
no vaccine | Immunization for HBV | | | HBV infection | Viral antigens or DNA | Anti-viral antibodies | |-------------------|-------------------------------|---------------------------------| | Acute infection | eAg (+), sAg (+), DNA (+) | Anti-HBc IgM | | Chronic infection | eAg (+) —————sAg (+), DNA (+) | → Anti-HBe (+) | | Recovered | - | Anti-HBc, anti-HBe,
anti-HBs | | vaccinated | - | Anti-HBs | | HCV infection | RNA | Antiviral antibody | |-------------------|---------|------------------------| | Chronic infection | RT-qPCR | ELISA for antiviral Ab | | HDV infection | RNA | HDV infection | |-------------------|---------|-------------------------| | Chronic infection | RT-qPCR | ELISA for delta antigen | # **Viruses-induced Diseases** #### 1. Oral and respiratory tract infections: oral: stomatitis (HSV), herpangina, Hand-foot-and-mouth (Coxsackie A virus) | | Oral: Stomatitis (HSV), herpangina, Hand-loot-and-mouth (Coxsackie A virus) | | | | | |-----------------|--|--|---|--|---| | respiratory | common
cold | pharyngitis | laryngitis,
croup,
tonsillitis,
bronchitis | bronchiolitis | pneumonia | | Etiologic agent | Rhinovirus* Coronavirus* Influenza Parainfleun za Respiratory syncytial virus (RSV) Metapneu movirus Adenovirus Enterovirus | HSV EBV Adenovirus * Coxsackie A virus* (herpangin a, Hand- foot-and- mouth) and other enterovirus es | Parainflue nza virus 1* Parainflue nza virus 2* Influenza Adenoviru s EBV | RSV* (infants) Parainfluen za 3* (infants and children) Metapneu movirus Parainfluen za 1 and 2 | RSV* (infants) Parainfluenza* (infants) Influenza virus* Adenovirus Metapneumovi rus VZV (primary infection of adults or immunocompr omised hosts) | # 2. Gastrointestinal tract infections gastroenteritis, diarrhea, vomiting # Infants Rotavirus*, Adenovirus 40, 41, infants, children, and adults: Norwalk virus*, Calicivirus, Astrovirus, Rotavirus A and B, Reovirus ^{*} Most common causal agent # 3. Exanthems and hemorrhagic fevers maculopapular, nodules, vesicular, hemorrhagic fever | Conditions | Etiologic agent | |---|---| | Rash | | | Rubeola | Measles virus | | German measles | Rubella virus | | Roseola infantum | Human herpesvirus 6 | | Erythema infectiosum | Human parvovirus B19 | | Boston exanthema | Echovirus 16 | | Infectious mononucleosis | EBV | | | Also caused by enterovirus, DV, and other flaviviruses. | | Vesicles | | | Oral or genital herpes | Herpes simplex virus | | Chickenpox/shingles | Varicella-zoster virus | | Hand-foot-and-mouth disease, herpangina | Coxsackie A virus* | | Papilloma, etc. | | | Warts | Papillomavirus* | | Molluscum | Molluscum contagiosum | # Hemorrhagic fever Yellow fever virus Dengue virus Ebola virus Lassa fever Hantavirus #### 4. Hematologic diseases mononucleosis (EBV or CMV), adult T-cell leukemia (HTLV), AIDS (HIV) ^{*}most common cause #### 5. Infections of the organs and tissues #### **Organs and diseases** #### Liver (hepatitis) - Hepatitis A*, B*, C*, G, D, and E viruses - Yellow fever virus - Epstein-Barr virus - Hepatitis in the neonate or immunocompromised person: - Cytomegalovirus - Herpes simplex virus - Varicella-zoster virus - Rubella virus (congenital rubella syndrome) #### **Heart** (myocarditis) Coxsackie B virus* #### **Kidney** Cytomegalovirus #### Muscle Coxsackie B virus (pleurodynia) #### Glands - Cytomegalovirus - Mumps virus #### Eye (conjunctivitis, keratoconjuctivitis) - Herpes simplex virus - Adenovirus* - Measles virus - Rubella virus - Enterovirus 70 - Coxsackie A24 virus #### 6. Central nervous system infections #### **Central Nervous System Infection** #### Meningitis Enteroviruses **Echoviruses** Coxsackie virus* **Poliovirus** - Herpes simplex virus 2 - Adenovirus - Mumps virus - Lymphocytic choriomeningitis virus - Arboencephalitis viruses #### **Paralysis** - Poliovirus - Enteroviruses 70 and 71 - Coxsackie A7 virus #### **Encephalitis** - Herpes simplex virus 1* - Varicella-zoster virus - Arboencephalitis viruses* - Rabies virus - Coxsackie A and B viruses - Polioviruses # **Transmission Routes** #### **Transmitted through blood** - Hepatitis B, C, G, D - Human immunodeficiency virus - Human T-cell lymphotrophic virus 1 - Cytomegalovirus - Epstein-Barr virus - West Nile encephalitis virus #### **Sexually Transmitted** - Human papillomavirus 6, 11, 42 - Human papillomavirus 16 and 18 (associated with human cervical carcinoma) - Herpes simplex virus (predominantly HSV-2) - Cytomegalovirus - Hepatitis B, C, and D viruses - Human immunodeficiency virus - Human T-cell lymphotrophic virus 1 #### **Arboviruses and Zoonosis** | Virus | Family | Reservoir/Vector | |------------------------------|--------|------------------------------| | Eastern equine encephalitis | Toga | Birds/Aedes mosquito | | Western equine encephalitis | Toga | Birds/Culex mosquito | | West Nile encephalitis | Flavi | Birds/Culex mosquito | | St. Louis encephalitis | Flavi | Birds/Culex mosquito | | California encephalitis | Bunya | Small mammals/Aedes mosquito | | La Crosse encephalitis | Bunya | Small mammals/Aedes mosquito | | Yellow fever | Flavi | Birds/Aedes | | Dengue | Flavi | Mosquito | | Colorado tick fever | Reo | Tick | | Lymphocytic choriomeningitis | Arena | Small mammals | | Lassa fever | Arena | Rats | | Sin Nombre virus | Hanta | Deer mice | | Ebola | Filo | unknown | | Rabies | Rhabdo | Bats, foxes, raccoons, etc. | #### **Chronic and Oncogenic Infection** **Chronic infections** (occur when the immune system has difficulty resolving the infection): - latent infection: The DNA viruses (except parvovirus and poxvirus) - chronic, productive infection: HBV, HDV, HCV, HDV, and retroviruses (CMV and some herpesviruses) #### **Transformations:** - **EBV:** Burkitt's lymphoma, Hodgkin's lymphoma, nasopharyngeal carcinoma - HTLV: Adult T-cell Lymphocytic Leukemia (ATLL) - Papillomavirus: Cervical carcinoma - ➤ HBV/HCV: hepatocellular carcinoma - > HHV-8: Kaposi's sarcoma #### **Prenatal, Neonatal and perinatal Infection** - Rubella, CMV, and ZIKV are examples of teratogenic viruses that can cause congenital infection and severe congenital abnormalities. - > HSV acquired during passage at birth can result in life-threatening disseminated disease. - > HIV acquired in utero or mother's milk initiates a chronic infection. - > B19 acquired in utero can cause spontaneous abortion. # **Examples of Targets for Antiviral Drugs** | Replication step or target | Agent | Targeted virus | |------------------------------------|--|---| | Attachment | Peptide analogue of attachment protein Neutralizing antibodies | HIV (CCR5 co-receptor antagonist) Most viruses | | | Heparan and dextran sulfate | HIV, HSV | | Penetration and uncoating | Amantadine, Rimantadine (against influenza M2 protein) | Infleuenza A virus | | Protein synthesis | Interferon | HCVs, papillomavirus | | DNA replication (viral polymerase) | Nucleoside analogues, e.g., acyclovir, AZT | Herpesviruses, HBV, poxviruses, etc | | Nucleoside biosynthesis | Ribavirin | RSV, Lassa fever virus, HCV | | Nucleoside scavenging enzyme | Nucleoside analogues | HSV, VZV | | Glycoprotein processing | - | HIV | | Assembly (protease) | Hydrophobic substrate analogues e.g., HAART for HIV | HIV, HCV | | Assembly (neuraminidase) | Oseltamivir (Tamiflu),
zanamivir (Relenza) | Influenza A, B virus | #### 1. Drugs preventing attachment and entry of virions - Pleconaril blocks many picornaviruses - Enfuvirtide binds to HIV-1 virion, block gp41 conformational change - Maraviroc binds to cellular HIV-1 co-receptor, CCR5 - > Amantadine and Rimantadine block M2 ion channels and inhibits uncoating of influenza virus #### 2. Replication inhibitors: nucleoside analogues: prevent chain elongation or induce inactivating mutation - Acyclovir is selectively phosphorylated by herpesvirus thymidine kinases. The acyclovir triphosphate is preferentially incorporated by HSV and VZV DNA polymerase. - Azidothymidine (AZT)-triphosphate is a more potent inhibitor of HIV reverse transcriptase than of human DNA polymerase. - **Ribavirin** induces inactivating mutation in RNA viral genomes. #### 3. Protease inhibitors - HCV and HIV protease inhibitors - Cocktail therapy for HIV: HAART (highly active antiretroviral treatment) include protease inhibitor, AZT and a second non-nucleoside RT inhibitor. #### 4. Immunomodulators \rightarrow IFN- α , pegylated IFN- α : HBV, HCV, HSV #### 5. Rational design of neuraminidase inhibitors Zanamivir (Relenza) and oseltamivir (Tamiflu) are designed to mimic sialic acid in order to fit in the active site of neuraminidase # Major types of antiviral vaccines #### Live wild-type viruses - Simple and effective - Viruses may replicate poorly in non-natural host but share immunogenic determinants with related target viruses #### Live attenuated viruses Serial passage and in vitro cultivation of viruses reduces their pathogenicity #### Inactivated viruses Virus is grown, purified, and subjected to inactivation by treatment with chemicals or high temperatures #### Subunit vaccines Consists of purified viral proteins that are immunogenic | Live wild-type viruses | Vaccinia (cowpox) ^a | |-------------------------|----------------------------------| | Live attenuated viruses | Adenovirus ^b | | | Influenza A (cold adapted) | | | Measles | | | Mumps | | | Polio (Sabin) | | | Rotavirus
(human-recombinant) | | | Rubella (german measles) | | | Varicella (chickenpox) | | | Yellow fever | | Whole inactivated | | | viruses | Hepatitis A | | | Influenza A | | | Influenza B | | | Polio (Salk) | | | Rabies | | | Tick-borne encephalitis | | Subunit vaccine | Hepatitis B surface antigen | | Virus-like particles | Human papillomavirus | | Chimeric virus | Rotavirus (human-bovine) | | | | ^aSmallpox eradicated (supply of vaccine tenuous). ^bMilitary use only. Perinuclear cytoplasmic vacuolization (Koilocytes), characteristic of human papillomavirus infection: Squamous epithelial cells with clear halos around shrunken nuclei - Characteristic histologic changes: Inclusion bodies in the nucleus or cytoplasm, margination of chromatin - Syncytia: Multinucleated giant cells caused by virus-induced cell-cell fusion A: acidophilic Cowdry type A intranuclear inclusion body **B:** smaller condensed nucleus (pyknotic) caused by HSV infection. #### **Downey cells** ## **Cytomegalic cells** FIGURE 43-17 Cytomegalovirus-infected cell with basophilic nuclear inclusion body. Copyright © 2016 by Elsevier Inc. All rights reserved. Enlarged cells: dense, central, "owl's eye", basophilic intranuclear inclusion body # **Functions of human retroviral accessory proteins** | Gene | virus | Function | |------|-------|---| | Tax | HTLV | Transactivation of viral and cellular genes | | Tat | HIV-1 | Transactivation of viral gene | | Rex | HTLV | Regulation of RNA splicing and promotion of export to cytoplasm | | Rev | HIV-1 | Regulation of RNA splicing and promotion of export to cytoplasm | | Nef | HIV-1 | Decreases cell surface CD4; facilitates T cell activation, progression to AIDS (essential) | | Vif | HIV-1 | Virus infectivity, promotion of assembly, blocks a cellular antiviral protein (APOBEC-3G) to prevent it from hypermutating the cDNA | | Vpu | HIV-1 | Facilitates virion assembly and release by degrading a cellular antiviral protein (tetherin), induces degradation of CD4 | | Vpr | HIV-1 | Transport of cDNA to nucleus, arrest cell growth at G2 phase, which is optimal for HIV replication |